Department of Chemical Engineering, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, Netherlands
Abstract:
It is shown that the two-phase model for bubbling gas—solid fluidized beds can be extended to bubble column slurry reactors operating in the heterogeneous flow regime by proper definition of the ‘dilute’ and ‘dense’ phases. The ‘dilute’ phase in a bubble column slurry reactor is to be identified with the fast-rising ‘large’ bubbles. The ‘dense’ phase consists of the slurry phase in which ‘small’ bubbles are finely dispersed. With the aid of extensive experimental data obtained in columns of 0.1, 0.19 and 0.38 m diameter it is shown that the rise velocity of the ‘dilute’ phase for gas—solid fluid beds and slurry reactors show analogous scale dependencies and can be modelled in a similar manner. It is also demonstrated that fluidized multiphase reactors can be modelled in a common manner using Computational Fluid Dynamics (CFD) within the Eulerian framework. It is concluded that CFD is an invaluable tool for scaling up of fluidized multiphase reactors.