首页 | 本学科首页   官方微博 | 高级检索  
     

基于数字孪生的航班保障预警系统
引用本文:黄智灵,张璐瑶,陈倩,等. 基于数字孪生的机场场面滑行冲突预测模型构建与分析[J]. 西华大学学报(自然科学版),2024,43(1):8 − 15. doi: 10.12198/j.issn.1673-159X.5168
作者姓名:黄智灵  张璐瑶  陈倩  唐欣  李晓欢
作者单位:1.天宇航空数据科技(合肥)有限责任公司, 安徽 合肥 230000;2.广西高校智能网联与场景化系统重点实验室(桂林电子科技大学), 广西 桂林 541004;3.广西综合交通大数据研究院, 广西 南宁 530025
基金项目:广西重点研发计划项目(桂科AB23026038);广西杰出青年基金资助项目(2019GXNSFFA245007)
摘    要:

传统机场场面滑行冲突检测主要依靠管制员目视判断冲突风险,随着航空运输量的增长,依靠人工判断方式的短板日益突出,急需一种降低人工依赖的冲突判定方法。目前大多数冲突模型存在模型与场面真实情况交互不及时等问题;因此本文提出一种基于数字孪生的机场场面滑行冲突预测模型,该模型通过物理系统与孪生系统数据交互从而及时对场面冲突进行预测。进一步,考虑孪生系统时延要求,基于4G、5G和AeroMACS(aeronautical mobile airport communications system)等机场场面主流的通信方式,进行了时延建模与分析。仿真结果表明,该模型能预测各冲突类型中航空器到达最小安全距离的时间,并在5G和AeroMACS组网条件下满足典型业务时延(0.5~20 ms),可为机场场面系统的网联化与智能化发展提供技术参考。



关 键 词:机场场面  数字孪生  滑行冲突  冲突预测  时延
收稿时间:2023-08-01

AGVS: A new change detection dataset for airport ground video surveillance
HUANG Zhiling, ZHANG Luyao, CHEN Qian, et al. Construction and Analysis of a Taxiing Conflict Prediction Model in Airport Scene Based on Digital Twin[J]. Journal of Xihua University(Natural Science Edition), 2024, 43(1): 8 − 15.. DOI: 10.12198/j.issn.1673-159X.5168
Authors:HUANG Zhiling  ZHANG Luyao  CHEN Qian  TANG Xin  LI Xiaohuan
Affiliation:1.Skyblue Aviation Technology(Hefei)Co., Ltd., Hefei 230000 China;2.Key Laboratory of Intelligent Networking and Scenario System(Guilin University of Electronic Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004 China;3.Guangxi Research Institute of Integrated Transportation Big Data, Nanning 530025 China
Abstract:The traditional airport scene taxiing conflict detection mainly relies on the controllers to visually judge the conflict risk. With the increase of air traffic volume, the shortcomings of relying on manual judgment are increasingly prominent, and a conflict judgment method is urgent to reduce manual dependence. At present, most conflict models have some problems, such as the lack of timely interaction between the model and the real situation of the scene. Consequently, based on digital twin, a taxiing conflict prediction model in airport scene is proposed in this paper. The scene conflict can be predicted timely in this model through the data interaction between the physical system and the twin system. Further, considered the delay requirement of the twin system, the delay modeling and analysis are carried out based on the mainstream communication methods 4G, 5G and AeroMACS(aeronautical mobile airport communications system) in airport scene. The simulation results show that the delay of 5G and AeroMACS is between 0.5 and 20 ms, which meets the requirement of communication delay.
Keywords:airport surface  digital twin  taxi conflict  conflict prediction  delay
点击此处可从《西华大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《西华大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号