首页 | 本学科首页   官方微博 | 高级检索  
     

工业场景下基于深度学习的时序预测方法及应用
引用本文:李长泰, 韩旭, 蒋若辉, 贠培文, 胡鹏飞, 班晓娟. 大模型及其在材料科学中的应用与展望[J]. 工程科学学报, 2024, 46(2): 290-305. DOI: 10.13374/j.issn2095-9389.2023.09.20.002
作者姓名:李长泰  韩旭  蒋若辉  贠培文  胡鹏飞  班晓娟
作者单位:1.北京科技大学北京材料基因工程高精尖创新中心,北京 100083;2.北京科技大学智能科学与技术学院,北京 100083;3.北京科技大学新材料技术研究院材料先进制备技术教育部重点实验室,北京 100083;4.北京科技大学新材料技术研究院现代交通金属材料与加工技术北京实验室,北京 100083;5.北京科技大学新材料技术研究院,北京 100083;6.北京科技大学智能仿生无人系统教育部重点实验室,北京 100083;7.辽宁材料实验室材料智能技术研究所,沈阳 110004
基金项目:国家自然科学基金资助项目(U22A2022);科技创新2030-重大项目(2022ZD0118001)
摘    要:

以大模型在材料科学中的应用为着眼点,首先综述了大模型,介绍了大模型的基本概念、发展过程、技术分类与特点等内容;其次从通用领域大模型和垂直领域大模型两个角度,总结了大模型的应用,列举分析了不同种类大模型的应用场景和功能. 再次,结合材料科学领域中的具体需求研究现状,调研并综述了语言大模型、视觉大模型和多模态大模型在材料科学中的应用情况,以自然语言处理和计算机视觉中的具体任务为切入,参考典型应用案例,综合提示工程策略和零样本知识迁移学习,厘清了当前将大模型应用至材料科学的研究范式和制约因素,并利用改进SAM视觉大模型在四种材料显微图像数据上进行了验证性图像分割与关键结构提取实验,结果表明SAM带来的零样本分割能力对于材料微结构的精准高效表征具有巨大应用潜力. 最后,提出了大模型相关技术、方法在材料科学中的未来研究机遇,从单模态到综合性多模态的大模型研发与调优,评估了可行性及技术难点.



关 键 词:大模型  深度学习  ChatGPT  SAM  材料科学  多模态
收稿时间:2023-09-20

Deep learning
LI Changtai, HAN Xu, JIANG Ruohui, YUN Peiwen, HU Pengfei, BAN Xiaojuan. Application and prospects of large models in materials science[J]. Chinese Journal of Engineering, 2024, 46(2): 290-305. DOI: 10.13374/j.issn2095-9389.2023.09.20.002
Authors:LI Changtai  HAN Xu  JIANG Ruohui  YUN Peiwen  HU Pengfei  BAN Xiaojuan
Affiliation:1.Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China;2.School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing 100083, China;3.Key Laboratory for Advanced Materials Processing (MOE), University of Science and Technology Beijing, Beijing 100083, China;4.Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;5.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;6.Key Laboratory of Intelligent Bionic Unmanned Systems, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China;7.Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang 110004, China
Abstract:Representative large models and their related applications, such as Bidirectional encoder representations from transformers (BERT), Generative pretrained transformer (GPT), Segment anything model (SAM), ChatGPT, DALL-E, Wenxin, and Pangu, have made astounding strides and exerted considerable influence across various fields domestically and abroad. They constantly attract the attention and follow-up of diverse societal sectors, including enterprises, universities, and research institutions. Large model applications have been successfully applied in scenarios such as biology, medicine, law, and social governance. Designing, modifying, and constructing domain-specific large models are crucial for truly harnessing their application value. Therefore, this paper provides inspiration for the application of large models in materials science. First, it provides an overview of large models, introducing their basic concepts, developmental process, technical classification, and features. Second, from the perspectives of the general domain and specific large models, this paper summarizes the applications of large models and analyzes the application scenarios and functions of various types of large models. Subsequently, considering the specific needs and current state of research in the field of materials science, this paper reviews the application of large language models, large visual models, and large multimodal models. It integrates engineering strategies and zero-shot knowledge transfer learning from specific tasks in natural language processing and computer vision and referencing typical application cases, clarifying current research paradigms and limiting factors for applying large models to materials science. To verify the effectiveness and potential of the visual large model, basal experiments of image segmentation and key structure extraction are performed on the microscopic image data of four types of materials using improved SAM, including Ni-superalloy, superalloy, polycrystalline pure iron grain, and Inconel 939. The experimental results reveal that the zero-shot segmentation capability of SAM has enormous potential for accurate and efficient representation of material microstructures. With the help of tailored prompt engineering, precise masks of the precipitated phase, grain boundaries, and cracks can be outputted without any label. Finally, this paper proposes future research opportunities for technologies and methods related to large models in materials science. This paper assesses the feasibility and technical challenges for the development and tuning of unimodal to comprehensive multimodal large models. With continuous innovations and collaborations, the horizon for large models in materials science seems boundlessly promising. The integration of these models can produce a new era of advanced research, leading to advancements that were previously considered unattainable. The symbiosis between materials science and large models can pave the way for unforeseen discoveries, enriching our scientific prowess.
Keywords:large models  deep learning  ChatGPT  SAM  materials science  multi-modality
点击此处可从《工程科学学报》浏览原始摘要信息
点击此处可从《工程科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号