首页 | 本学科首页   官方微博 | 高级检索  
     


Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications
D. Wang, N. Gao, D. Liu, J. Li, and F. Lewis, “Recent progress in reinforcement learning and adaptive dynamic programming for advanced control applications,” IEEE/CAA J. Autom. Sinica, vol. 11, no. 1, pp. 18–36, Jan. 2024. doi: 10.1109/JAS.2023.123843
Authors:Ding Wang  Ning Gao  Derong Liu  Jinna Li  Frank L. Lewis
Abstract:Reinforcement learning (RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming (ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively. Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks, showing how they promote ADP formulation significantly. Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has demonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence.
Keywords:Adaptive dynamic programming (ADP)   advanced control   complex environment   data-driven control   event-triggered design   intelligent control   neural networks   nonlinear systems   optimal control   reinforcement learning (RL)
点击此处可从《IEEE/CAA Journal of Automatica Sinica》浏览原始摘要信息
点击此处可从《IEEE/CAA Journal of Automatica Sinica》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号