首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络改进算法在地铁隧道施工中的沉降预测
引用本文:吴乃龙,周永领. 基于BP神经网络改进算法在地铁隧道施工中的沉降预测[J]. 城市勘测, 2015, 0(3). DOI: 10.3969/j.issn.1672-8262.2015.03.045
作者姓名:吴乃龙  周永领
作者单位:福州市勘测院,福建 福州,350003
摘    要:为使地铁隧道在施工中沉降监测数据具有一定的预见性,分别采用了BP神经网络改进算法的预测模型、传统BP神经网络预模型以及基于时间序列的三次指数平滑法预测模型对地铁隧道施工中的沉降监测数据进行了预测。对其预测结果进行分析,得出了BP神经网络改进算法模型预测精度优于传统BP神经网络模型以及基于时间序列的三次指数平滑法模型预测精度的结论。

关 键 词:神经网络  时间序列  沉降监测  数据处理

Research on Settlement Monitoring of Subway Tunnel Construction Based on Improved Algorithm of BP Neural Network
Wu Nailong,Zhou Yongling. Research on Settlement Monitoring of Subway Tunnel Construction Based on Improved Algorithm of BP Neural Network[J]. Urban Geotechnical Investigation & Surveying, 2015, 0(3). DOI: 10.3969/j.issn.1672-8262.2015.03.045
Authors:Wu Nailong  Zhou Yongling
Abstract:The Subway tunnel subsidence monitoring data were predicted to make it has some predictability in con-struction by the improved algorithm of BP neural network prediction model,the traditional BP neural network prediction model and the cubic exponential smoothing prediction model based on time series respectively. And analysis of theirs prediction results,it gets the conclusion that the improved algorithm of BP neural network model batter than the tradition-al BP neural network model and the cubic exponential smoothing prediction model based on time series about prediction accuracy. It has reference value for the early warning and forecast of subway monitoring.
Keywords:neural networks  time series  subsidence monitoring  data processing
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号