首页 | 本学科首页   官方微博 | 高级检索  
     

小波与神经网络相结合的网络流量预测模型
引用本文:姚萌,刘渊,周刚. 小波与神经网络相结合的网络流量预测模型[J]. 计算机工程与设计, 2007, 28(21): 5135-5136,5159
作者姓名:姚萌  刘渊  周刚
作者单位:江南大学,信息工程学院,江苏,无锡,214122;江南大学,信息工程学院,江苏,无锡,214122;江南大学,信息工程学院,江苏,无锡,214122
摘    要:针对网络流量序列的非线性和多时间尺度特性,提出了一种将小波变换与人工神经网络相结合进行网络流量预测的新模型.该模型吸取了小波变换的多分辨功能和人工神经网络的非线性逼近能力,对流量时间序列进行小波分解,得到小波变换尺度系数序列和小波系数序列,分别使用RBF神经网络和Elman神经网络进行预测,把两种预测的结果通过BP神经网络合成为最终预测结果.用实际网络流量对该模型进行验证,结果表明,该模型具有较高的预测效果.

关 键 词:网络流量  小波变换  神经网络  结合  预测
文章编号:1000-7024(2007)21-5135-02
修稿时间:2006-11-23

Network traffic prediction model of wavelet combined neural network
YAO Meng,LIU Yuan,ZHOU Gang. Network traffic prediction model of wavelet combined neural network[J]. Computer Engineering and Design, 2007, 28(21): 5135-5136,5159
Authors:YAO Meng  LIU Yuan  ZHOU Gang
Affiliation:College of Information Engineering, Southern Yangtze University, Wuxi 214122, China
Abstract:Based on the multi-time scale and the nonlinear character of the network traffic time series,a new network traffic prediction model which combines the wavelet transform and neural network is presented.The suggested model has advantage with its absorbing some merits of wavelet transform and artificial neural network.First,the traffic time series are decomposed to the scaling coefficient series and wavelet coefficient series.Then,RBF neural network and Elman neural network are used respectively to make prediction. Finally,the two predictions are combined into the final result through BP neural network.The simulation results on real network traffic show the new model has better predictive precision.
Keywords:network traffic  wavelet transform  neural network  combine  prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号