首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于量子行为的改进粒子群算法
引用本文:马金玲,唐普英. 一种基于量子行为的改进粒子群算法[J]. 计算机工程与应用, 2007, 43(36): 89-90
作者姓名:马金玲  唐普英
作者单位:电子科技大学光电信息学院,成都,610054;电子科技大学光电信息学院,成都,610054
摘    要:研究粒子群优化算法(PSO)的收敛速度,以提高该算法性能是PSO的一个重要而且有意义的研究。Jun Sun 等人通过对PSO系统下的单个个体在量子多维空间的运动及其收敛性的分析,提出了具有函数形式的粒子群算法(Quantum Delta-Potential-Well-based PSO)。在此基础上进行了改进,用粒子的速度来产生一个随机数引导粒子向最优解快速靠拢,并对速度的处理采取了新的策略。仿真结果表明:该改进算法对收敛速度有非常好的改善,而且稳定性也较好。

关 键 词:粒子群优化算法  量子行为  量子机理
文章编号:1002-8331(2007)36-0089-02
修稿时间:2007-07-01

Modified particle swarm optimization with particles having quantum behavior
MA Jin-ling,TANG Pu-ying. Modified particle swarm optimization with particles having quantum behavior[J]. Computer Engineering and Applications, 2007, 43(36): 89-90
Authors:MA Jin-ling  TANG Pu-ying
Affiliation:School of Opto-electronic Information,University of Electronic Science and Technology of China,Chengdu 610054,China
Abstract:It makes sense to search on the PSO from its convergence speed in order to improve its performance.Jun Sun etc proposed the QDPSO inspired by the analysis of convergence of PSO and individual particle moving in a quantum multi-dimension space in PSO system,and established a quantum Delt potential well model for PSO.The random number produced by speed of particles is used to guide particles converging to the optimal solution quickly.The modified QDPSO takes a new method for speed.The experiment result shows that the performance of modified algorithm is far better,faster and more stabile in convergence.
Keywords:particle swarm optimization  quantum behavior  quantum mechanics
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号