首页 | 本学科首页   官方微博 | 高级检索  
     


A Cutter Orientation Modification Method for the Reduction of Non-linearity Errors in Five-Axis CNC Machining
Authors:H Liang  H Hong  J Svoboda
Affiliation:  a Centre for Industrial Control, Concordia University, Montreal, Canada
Abstract:In the machining of sculptured surfaces, five-axis CNC machine tools provide more flexibility to realize the cutter position as its axis orientation spatially changes. Conventional five-axis machining uses straight line segments to connect consecutive machining data points, and uses linear interpolation to generate command signals for positions between end points. Due to five-axis simultaneous and coupled rotary and linear movements, the actual machining motion trajectory is a non-linear path. The non-linear curve segments deviate from the linearly interpolated straight line segments, resulting in a non-linearity machining error in each machining step. These non-linearity errors, in addition to the linearity error, commonly create obstacles to the assurance of high machining precision. In this paper, a novel methodology for solving the non-linearity errors problem in five-axis CNC machining is presented. The proposed method is based on the machine type-specific kinematics and the machining motion trajectory. Non-linearity errors are reduced by modifying the cutter orientations without inserting additional machining data points. An off-line processing of a set of tool path data for machining a sculptured surface illustrates that the proposed method increases machining precision.
Keywords:Non-linearity error  Machine kinematics  Machining motion trajectory
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号