首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进EKF的飞机蓄电池在线SOC估计方法
引用本文:刘泽元,王友仁,陈则王,崔江,裴莹. 基于改进EKF的飞机蓄电池在线SOC估计方法[J]. 电子测量技术, 2015, 38(7): 119-123
作者姓名:刘泽元  王友仁  陈则王  崔江  裴莹
作者单位:南京航空航天大学自动化学院测试系 南京 210016
基金项目:航空科学基金(2013ZD52055)项目
摘    要:蓄电池荷电状态(state of charge,SOC)是电池管理系统最为重要的参数之一,由于飞机蓄电池工作环境恶劣复杂,具有较强的非线性,给蓄电池的在线 SOC估计带来较大的困难。以提高复杂应力条件下飞机蓄电池在线 SOC估计精度为目的,采用性能测试实验对蓄电池性能参数的温度、放电率特性进行研究,并提出递推最小二乘法与扩展卡尔曼滤波算法结合的改进 EKF方法,实现蓄电池等效电路模型参数的在线辨识以及蓄电池在线 SOC 的估计。上述方法通过物理实验进行了验证,实验结果表明,改进后 EKF方法的 SOC 估计误差小于0.5%,估计精度获得明显提高。

关 键 词:荷电状态  递推最小二乘法  改进 EKF算法  在线 SOC估计

Method of aircraft battery on line SOC estimation based on improved EKF algorithm
Liu Zeyuan,Wang Youren,Chen Zewang,Cui Jiang and Pei Ying. Method of aircraft battery on line SOC estimation based on improved EKF algorithm[J]. Electronic Measurement Technology, 2015, 38(7): 119-123
Authors:Liu Zeyuan  Wang Youren  Chen Zewang  Cui Jiang  Pei Ying
Affiliation:College of Automation Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China,College of Automation Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China,College of Automation Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China,College of Automation Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China and College of Automation Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
Abstract:State of charge (SOC) is one of the most important parameters for the battery management system. Due to the aircraft battery complex working conditions and strong nonlinear, it brings difficulties for the battery online SOC estimation. In order to improve the aircraft battery online SOC estimation accuracy under complicated stress condition, the temperature and discharge rate characteristics of battery performance parameters were researched. Then, this paper puts forward a improved EKF method which combine EKF algorithm with RLS algorithm. This method not only can realize online identification of the equivalent circuit model parameter, but also can realize the on line SOC eatimation. This method was physical verified through experimental, and the experimental results show that the improved EKF method can enhance the online SOC estimation obviously, the accuracy can reach above 0.5%.
Keywords:state of charge  recursive least squares  improved EKF algorithm  online SOC estimation
点击此处可从《电子测量技术》浏览原始摘要信息
点击此处可从《电子测量技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号