首页 | 本学科首页   官方微博 | 高级检索  
     


Uncover the cover to recover the hidden secret - A separable reversible data hiding framework
Authors:Anushiadevi  R  Praveenkumar  Padmapriya  Rayappan  John Bosco Balaguru  Amirtharajan  Rengarajan
Affiliation:1.School of Computing, SASTRA Deemed University, Thanjavur, 613 401, India
;2.School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur, 613 401, India
;
Abstract:

The volatile development in the multimedia cognitive content is changing the global set-up towards a cloud-based architecture which is helped us with a massive amount of computer storage and the highest computational platform. Cost-saving and elasticity of services will be provided by progressive cloud computing technology for users. With the advancement in multimedia technology, the data owners outsource their private multimedia data on the hybrid cloud. Meantime the cloud servers also carry out some highly computationally expensive tasks. Nevertheless, there is an opportunity for security infracts possible in the public cloud environment. It makes an alarm for a cloud environment in security aspects. Before outsourcing multimedia data, an encryption technique is needed for safeguarding against several attacks. But performing the same is a significant challenge. A new research area was recently awakened on privacy-preserving Reversible Data Hiding (RDH) especially for multimedia data over the outsourced environment. A novel RDH for an encrypted image was proposed in this paper by using the (Most Significant Bit) MSB difference of the pixel value. By using this method, any third-party people can embed the ciphertext in the cipher image without the knowledge of the cover and secret. A person with decryption keys can get back the secret and the cover without any loss. The proposed work achieves the embedding capacity up to 1 bpp (bits per pixel) with the encryption quality of near-zero correlation and uniform histogram. The decrypted image is also retrieved with infinite Peak Signal to Noise Ratio (PSNR), unit Structural Similarity Index Metric (SSIM) and zero Bit Error Rate (BER).

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号