首页 | 本学科首页   官方微博 | 高级检索  
     


Deep Metallogenic prediction model construction of the Xiongcun no. II orebody based on the DNN algorithm
Authors:Zhang  Di  Zhou  Zhongli  Han  Suyue  Gong  Hao  Zou  Tianyi  Luo  Jie
Affiliation:1.College of Management Science, Chengdu University of Technology, Chengdu, 610059, China
;2.Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu, 610059, China
;
Abstract:

With the continuous mining and gradual reduction of shallow deposits, deep prospecting has become a new global prospecting trend. In addition, with the development of artificial intelligence, deep learning provides a favorable means for geological big data analysis. This paper, researches the No. II Orebody of the Xiongcun deposit. First, based on previous research results and metallogenic regularity, prospecting information, namely, lithology, Au-Ag-Cu chemical elements and wall rock alteration is extracted, and the block model is established by combining the Kriging interpolation structure. Second, the datasets are divided into dataset I and dataset II according to “randomness” and “depth”. Third, deep prospecting prediction models based on deep neural networks (DNN) and the convolutional neural networks (CNN) is constructed, and the model parameters are optimized. Finally, the models are applied to the deep prediction of the Xiongcun No. II Orebody. The results show that the accuracy rate and recall rate of the prediction model based on the DNN algorithm are 96.15% and 89.23%, respectively, and the AUC is 96.39%, which are higher values than those of the CNN algorithm, indicating that the performance of the prediction model based on the DNN algorithm is better. The accuracy of prediction model based on dataset I is higher than that of dataset II. The accuracy of deep metallogenic prediction based on the DNN algorithm is approximately 89%, that based on the CNN is approximately 87%, and that based on prospecting information method is approximately 61.27%. The prediction results of the DNN algorithm are relatively consistent in the spatial location and scale of the orebody. Therefore, based on the work done in this paper, it is feasible to use a deep learning method to carry out deep mineral prediction.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号