首页 | 本学科首页   官方微博 | 高级检索  
     


Convective Drying with Time-Varying Heat Input: Simulation Results
Authors:Md. Raisul Islam   J. C. Ho  A. S. Mujumdar
Affiliation: a Department of Mechanical Engineering, National University of Singapore, Singapore
Abstract:Intermittent drying aims to match the heat input rate to the drying kinetics of the material so as to avoid thermal degradation of heat-sensitive products in particular. This paper presents results of a liquid diffusion model to examine the effect of varying the rates of heat input by convection heat transfer. This is accomplished by varying the drying air velocity, varying the air temperature as well as its relative humidity over different periods of time in a sequential manner. One of the outcomes of this work is guidelines for use of a heat pump to dehumidify the drying air. While most heat pump dryers are designed to operate continuously, our results show that it is not necessary to use heat pump continuously over the entire drying period. This option saves running costs by reducing use of electrical power in the drying cycle. Furthermore, it is possible to save capital costs by utilizing a smaller heat pump for a given dry product output. Alternatively, a given heat pump system can be used to service two or more drying chambers that may dry the same or different products by simply switching the dehumidified and heated air from one chamber to the other sequentially. When the heat pump air is switched off, unsaturated ambient air maybe used to accomplish rest of the drying. It is shown that using heat pump air over only a part of the drying cycle does not increase the drying time appreciably.
Keywords:Heat sensitive materials  Liquid diffusion  Heat pump drying  Multi-chamber dryers  Energy savings  Variable velocity  Variable temperature  Variable humidity
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号