首页 | 本学科首页   官方微博 | 高级检索  
     


Projection of individual axons from the pretectum to the dorsal lateral geniculate complex in the cat
Authors:DJ Uhlrich  KA Manning
Affiliation:Department of Anatomy, University of Wisconsin Medical School, Madison 53706, USA.
Abstract:The dorsal lateral geniculate nucleus of the thalamus transmits visual signals from the retina to the cortex. Within the lateral geniculate nucleus, the ascending visual signals are modified by the actions of a number of afferent pathways. One such projection originates in the pretectum and appears to be active in association with oculomotor activity. Much remains unknown about the pretectal-geniculate projection. Our purpose was to examine for the first time individual axon arbors from the pretectum that project to the lateral geniculate nucleus, describing their topography and nuclear and laminar targets. We made injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin into the cat pretectum, targeting the nucleus of the optic tract. Serial 40 microns coronal sections were processed by using immunohistochemistry to reveal labeled axons that were then serially reconstructed using light microscopy. Pretectal-geniculate axons appeared morphologically heterogeneous in terms of swelling size, branching patterns, and laminar target. Most axons innervated the geniculate A laminae. A separate, smaller population innervated the C laminae. All axons exhibited substantially greater spread medial-laterally than rostral-caudally in the lateral geniculate nucleus, displaying a topographical organization for visual field elevation, but not azimuth. Many pretectal axons that projected to the LGN also innervated adjacent structures, including the medial interlaminar nucleus, the perigeniculate nucleus, and/or the pulvinar. These results indicate that the projection from the pretectum to the dorsal lateral geniculate nucleus is heterogeneous, is semitopographical, and may coordinate neural activity in the lateral geniculate nucleus and in neighboring visual thalamic structures in association with oculomotor events.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号