首页 | 本学科首页   官方微博 | 高级检索  
     


On the parametric approach to unit hydrograph identification
Authors:Demetris Koutsoyiannis  Themistocle Xanthopoulos
Affiliation:(1) Department of Civil Engineering, Division of Water Resources, National Technical University of Athens, 5 Iroon Polytechniou, GR-15773 Zografou, Greece
Abstract:Unit hydrograph identification by the parametric approach is based on the assumption of a proper analytical form for its shape, using a limited number of parameters. This paper presents various suitable analytical forms for the instantaneous unit hydrograph, originated from known probability density functions or transformations of them. Analytical expressions for the moments of area of these form versus their definition parameters are theoretically derived. The relation between moments and specific shape characteristics are also examined. Two different methods of parameter estimation are studied, the first being the well-known method of moments, while the second is based on the minimization of the integral error between derived and recorded flood hydrographs. The above tasks are illustrated with application examples originated from case studies of catchments in Greece.Notations A catchment area - a,b,c definition parameters (generallya is a scale parameter, whileb andc are shape parameters) - C v coefficient of variation - C s skewness coefficient - D net rainfall duration - f( ) probability density function (PDF) - F( ) cumulative (probability) distribution function (CDF) - g( ) objective function - H net rainfall depth - H 0 unit (net) rainfall depth (=10 mm) - I(t) net hyetograph - i(t) standardized net hyetograph (SNH) - I n n th central moment of the standardized net hyetograph - Q(t) surface runoff hydrograph - q(t) standardized surface runoff hyrograph (SSRH) - Q n n th central moment of the standardized surface runoff hydrograph - S D (t) S-curve derived from a unit hydrograph of durationD - s(t) standardizedS-curve (SSC) - t time - T D flood duration of the unit hydrographU D (t) - T 0 flood duration of the instantaneous unit hydrographU 0(t) (= right bound of the functionU 0(t)) - t U IUH lag time (defined as the time from the origin to the center of area of IUH or SIUH) - t I time from the origin to the center of the area of the net hyetograph - t Q time from the origin to the center of the area of the surface runoff hydrograph - t p time from the origin to the peak of IUH (or SIUH) - U D (t) unit hydrograph for rainfall of durationD (DUH) - U o (t) instantaneous unit hydrograph (IUH) - u(t) standardized instantaneous unit hydrograph (SIUH) - U n nth central moment of area of IUH - Uprime n nth moment of IUH about the origin - UPrime n nth moment of IUH about the right bound (when exists) - V surface runoff volume - V 0 volume corresponding to the unit hydrograph
Keywords:Unit hydrograph  instantaneous unit hydrograph  identification  probability density function  probability distribution function  method of moments  optimization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号