首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics of iron oxide reduction from CaO-MgO-FeOn-SiO2 slags by silicon dissolved in liquid iron
Authors:Hui Xie  Manuela Schulz  Franz Oeters
Abstract:At steelmaking temperatures, the kinetics of slag-metal reactions is usually determined by mass transfer. This occurs in two ways: normal mass transfer which is induced by stirring, and mass transfer by interfacial convection induced by interfacially active elements like oxygen and sulphur. In the present work, mass transfer during the reduction of iron oxide from a basic slag by silicon dissolved in liquid iron was studied under defined conditions of gas stirring by argon in MgO crucibles with 1500 g iron and 250 g slag. The variations of the FeO content in the slag and the silicon content in the iron during the reaction were measured by sampling. Trials were carried out with stirring gas flow rates between 1 and 20.4 l/h(STP). The experimental data were evaluated with the multi-component transport model in order to determine the mass transfer coefficients of the reaction components. Simultaneously, the coefficients of normal mass transfer were calculated with the boundary layer theory of liquid-liquid mass transfer for non-turbulent flow conditions. The measured mass transfer coefficients were by a factor 2.5 larger than the theoretically calculated. The difference indicates the presence of mass transfer by interfacial convection. Mass transfer by interfacial convection is superimposed to normal mass transfer.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号