首页 | 本学科首页   官方微博 | 高级检索  
     


Grain boundary segregation of sulfur and antimony in iron alloys
Authors:R. H. Jones  D. R. Baer  L. A. Charlot  M. T. Thomas
Affiliation:(1) Battelle-Northwest Laboratory, P. O. Box 999, 99352 Richland, WA
Abstract:A correlation between sulfur and antimony grain boundary segregation has been observed on inter-granular surfaces of iron by Auger electron spectroscopy (AES). The slope of a plot of S/Sb indicated a ratio of two antimony atoms per sulfur atom arriving at the grain boundary, while the ratio for the total S/Sb at the grain boundary was about 1.2. These results were obtained with Fe, Fe + 0.07Mn, Fe + 0.03Sb, Fe + 0.1Mn + 0.02Sb, and Fe + 0.1Mn + 0.05Sb (at. pct) alloys. Possible expla-nations for this correlated segregation, such as cosegregation of sulfur and antimony, precipitation of a thin layer of antimony sulfide, and compctitive segregation with carbon and nitrogen, were evalu-ated using AES, X-ray photoelectron spectroscopy (XPS), and scanning transmission electron mi-croscopy with energy-dispersive X-ray (STEM-EDS). The results of these analyses indicated that there was no resolvable antimony sulfide phase in the grain boundary and that S and Sb were not chemically bound at the grain boundary in a two-dimensional phase. The S was shown to be strongly bound to the iron in a chemical state close to that of an iron sulfide, but the Sb was in the elemental state. Nor could this correlated segregation be satisfactorily explained by a cosegregation process nor by compctitive segregation with other elements. The most plausible explanation appears to involve the effect of sulfur on the activity/solubility of antimony or antimony on the activity/solubility of sul-fur, as explained by an increase in the ratioX c /X Co in the Brunauer-Emmett-Teller (BET) adsorption isotherm adapted for equilibrium segregation in solids.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号