首页 | 本学科首页   官方微博 | 高级检索  
     


A confocal microscopic survey of serotoninergic axons in the lumbar spinal cord of the rat: co-localization with glutamate decarboxylase and neuropeptides
Authors:L Maxwell  DJ Maxwell  M Neilson  R Kerr
Affiliation:Laboratory of Human Anatomy, University of Glasgow, U.K.
Abstract:Patterns of co-localization of serotonin with glutamate decarboxylase (the synthetic enzyme for GABA) or each one of eight neuropeptides (calcitonin gene-related peptide, dynorphin, enkephalin, galanin, neuropeptide Y, neurotensin, substance P and somatostatin) were investigated with dual-colour confocal laser scanning microscopy in the lumbar spinal cords of three adult rats. Four regions of the gray matter were studied (laminae I-II, V, IX and X). The extent of co-localization was estimated by direct assessment of merged pairs of optical sections and by automated image analysis. Co-localization of serotonin and glutamate decarboxylase was found only in a few axons of laminae I-II but was not detected in other laminae. Peptides were not co-localized with serotonin in the superficial dorsal horn but considerable co-localization was found in motor nuclei and sparse co-localization was found in laminae V and X. Galanin and substance P frequently co-existed with serotonin in lamina IX but some co-localization with dynorphin, somatostatin, Met]enkephalin and neuropeptide Y was also detected. Galanin, substance P and dynorphin were also co-localized with serotonin in a few axons of the deep dorsal horn and in the gray matter around the central canal. Neurotensin and calcitonin gene-related compound did not co-exist with serotonin in any of the laminae investigated. This evidence suggests that different populations of serotoninergic axons project to different regions of the spinal gray matter. Those containing glutamate decarboxylase terminate in the superficial dorsal horn and are likely to be involved in antinociception, whereas those containing peptides terminate principally in motor nuclei and are likely to modulate motor activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号