首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of high-pressure micro jet technology as an alternative to diamond disc conditioning in ILD CMP
Authors:Darren DeNardis   Yoshiyuki Seike   Mineo Takaoka   Keiji Miyachi  Ara Philipossian
Affiliation:aDepartment of Chemical and Environmental Engineering, University of Arizona, P.O. Box 210011, Tucson, AZ 85721-0011, USA;bAsahi Sunac Corporation, NC Division, 5050 Asahimaecho, Owariasahishi Aich, Japan 488-8688
Abstract:The efficacy of an alternative to conventional diamond conditioning in chemical mechanical planarization (CMP) was evaluated in this study. The high pressure micro jet (HPMJ) system sprays ultra-pure water (UPW) at pressures ranging from 10 to 20 MPa onto a CMP pad to clean the pad of slurry residue, remove embedded slurry particles, and re-establish pad asperities. The system is employed in an ex situ fashion and is compared to in situ and ex situ diamond conditioning as well as using no conditioning. Real-time frictional force acquisition allows for coefficient of friction (COF) analysis, which indicates the extent of pad wear. Removal rate analysis, SEM imagery, and pad surface profilometry are also used to evaluate HPMJ as an alternative conditioning technology. Removal rates significantly lower than those associated with diamond conditioning are obtained for the HPMJ system when UPW conditioning is directly followed by polishing. SEM imagery and pad profilimetry indicate these low HPMJ removal rates are due to differences in pad surface chemistry, not pad surface topography. Experiments including a 30 s silicon wafer polish with slurry following HPMJ conditioning to re-establish pad surface chemistry were performed and result in removal rates that are comparable to those obtained using ex situ conditioning. The removal rates obtained using HPMJ conditioning for relative wafer-platen velocities of 0.31 and 0.62 m/s are 8 and 1% higher than those obtained using ex situ diamond conditioning and 18% lower than those obtained using ex situ diamond conditioning for 0.93 m/s. The average COF values for HPMJ conditioning using the intermediate silicon wafer polishes are 15% lower than average COF values associated with ex situ diamond conditioning, suggesting a possible increase in pad life for the HPMJ system.
Keywords:CMP   Pad life   Pad wear   Conditioning   Tribology   Coefficient of friction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号