首页 | 本学科首页   官方微博 | 高级检索  
     


PMMA‐modified divinylester/styrene resins: Phase diagrams and morphologies
Authors:Walter F. Schroeder,Marí  a J. Y    ez,Mirta I. Aranguren,Julio Borrajo
Affiliation:Walter F. Schroeder,María J. Yáñez,Mirta I. Aranguren,Julio Borrajo
Abstract:Binary and ternary experimental cloud‐point curves (CPCs) for systems formulated with a low molar mass synthesized divinylester (DVE) resin, styrene (St), and poly(methyl methacrylate) (PMMA) were determined. The CPCs results were analyzed with the Flory–Huggins (F‐H) thermodynamic model taking into account the polydispersity of the DVE and PMMA components, to calculate the different binary interaction parameters and their temperature dependences. The St‐DVE system is miscible in all the composition range and down to the crystallization temperature of the St; therefore, the interaction parameter expression reported for a higher molar mass DVE was adapted. The interaction parameters obtained were used to calculate the phase diagrams of the St‐PMMA and the DVE‐PMMA binary systems and that of the St‐DVE‐PMMA ternary system at three different temperatures. Quasiternary phase diagrams show liquid–liquid partial miscibility of the St‐PMMA and DVE‐PMMA pairs. At room temperature, the St‐DVE‐PMMA system is miscible at all compositions. Final morphologies of PMMA‐modified cured St‐DVE materials were generated by polymerization‐induced phase separation (PIPS) mechanism from initial homogeneous mixtures. SEM and TEM micrographs were obtained to analyze the generated final morphologies, which showed a direct correlation with the initial miscibility of the system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4539–4549, 2006
Keywords:divinylester resin  PMMA modifier  blends  phase diagrams  Flory–  Huggins analysis  morphology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号