首页 | 本学科首页   官方微博 | 高级检索  
     


Autoregulation of periodontal ligament cell phenotype and functions by transforming growth factor-beta1
Authors:TA Brady  NP Piesco  MJ Buckley  HH Langkamp  LL Bowen  S Agarwal
Affiliation:Department of Orthodontics, University of Pittsburgh School of Dental Medicine, Pennsylvania 15261-1964, USA.
Abstract:During orthodontic tooth movement, mechanical forces acting on periodontal ligament (PDL) cells induce the synthesis of mediators which alter the growth, differentiation, and secretory functions of cells of the PDL. Since the cells of the PDL represent a heterogeneous population, we examined mechanically stress-induced cytokine profiles in three separate clones of human osteoblast-like PDL cells. Of the four pro-inflammatory cytokines investigated, only IL-6 and TGF-beta1 were up-regulated in response to mechanical stress. However, the expression of other pro-inflammatory cytokines such as IL-1 beta, TNF-alpha, or IL-8 was not observed. To understand the consequences of the increase in TGF-beta1 expression following mechanical stress, we examined the effect of TGF-beta1 on PDL cell phenotype and functions. TGF-beta1 was mitogenic to PDL cells at concentrations between 0.4 and 10 ng/mL. Furthermore, TGF-beta1 down-regulated the osteoblast-like phenotype of PDL cells, i.e., alkaline phosphatase activity, calcium phosphate nodule formation, expression of osteocalcin, and TGF-beta1, in a dose-dependent manner. Although initially TGF-beta1 induced expression of type I collagen mRNA, prolonged exposure to TGF-beta1 down-regulated the ability of PDL cells to express type I collagen mRNA. Our results further show that, within 4 hrs, exogenously applied TGF-beta1 down-regulated IL-6 expression in a dose-dependent manner, and this inhibition was sustained over a six-day period. In summary, the data suggest that mechanically stress-induced TGF-beta1 expression may be a physiological mechanism to induce mitogenesis in PDL cells while down-regulating its osteoblast-like features and simultaneously reducing the IL-6-induced bone resorption.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号