首页 | 本学科首页   官方微博 | 高级检索  
     


Performance analysis of an all-digital BPSK direct-sequencespread-spectrum IF receiver architecture
Authors:Chung  B-Y Chien  C Samueli  H Jain  R
Affiliation:Dept. of Electr. Eng., California Univ., Los Angeles, CA;
Abstract:A VLSI architecture for an all-digital binary phase shift keying (BPSK) direct-sequence (DS) spread spectrum (SS) intermediate frequency (IF) receiver is presented, and an in-depth performance analysis is given. The all-digital architecture incorporates a Costas loop for carrier recovery and a delay-locked loop for clock recovery. For the pseudorandom noise (PN) acquisition block, a robust energy detection scheme is proposed to reduce false PN locks over a broad range of signal-to-noise ratios. The proposed architecture is intended for use in the 902-928 MHz unlicensed spread spectrum radio band. A 100 kbs information rate and a 12.7 Mchips/second PN code rate are assumed. The IF center frequency is 12.7 MHz and the IF sampling rate is 50.8 Msamples/second, which is the Nyquist rate for the 25.4 MHz bandwidth signal. Finite wordlength effects have been simulated to optimize the architecture, thereby minimizing the chip area, and results of the finite wordlength simulations demonstrate that the chip architecture achieves a bit error rate performance within 1 dB of theory in an additive white Gaussian noise channel
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号