首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling hydrogen starvation conditions in proton-exchange membrane fuel cells
Authors:Jan Hendrik Ohs  Ulrich SauterSebastian Maass  Detlef Stolten
Affiliation:a Robert Bosch GmbH, Robert-Bosch-Platz 1, 70839 Gerlingen-Schillerhöhe, Germany
b Forschungszentrum Jülich GmbH, IEF-3: Fuel Cells, 52425 Jülich, Germany
Abstract:In this study, a steady state and isothermal 2D-PEM fuel cell model is presented. By simulation of a single cell along the channel and in through-plane direction, its behaviour under hydrogen starvation due to nitrogen dilution is analysed. Under these conditions, carbon corrosion and water electrolysis are observed on the cathode side. This phenomenon, causing severe cell degradation, is known as reverse current decay mechanism in literature. Butler-Volmer equations are used to model the electrochemical reactions. In addition, we account for permeation of gases through the membrane and for the local water content within the membrane. The results show that the membrane potential locally drops in areas starved from hydrogen. This leads to potential gradients >1.2 V between electrode and membrane on the cathode side resulting in significant carbon corrosion and electrolysis reaction rates. The model enables the analysis of sub-stoichiometric states occurring during anode gas recirculation or load transients.
Keywords:PEMFC modeling   Cell degradation   Carbon corrosion   Reverse current decay mechanism   Agglomerate model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号