首页 | 本学科首页   官方微博 | 高级检索  
     


Electrical conductivity of carbon‐filled polypropylene‐based resins
Authors:Julia A. King  Beth A. Johnson  Michael D. Via  Charles J. Ciarkowski
Abstract:Adding conductive carbon fillers to insulating thermoplastic resins increases composite electrical conductivity. Often, as much of a single type of carbon filler is added to achieve the desired conductivity and still allow the material to be molded into a bipolar plate for a fuel cell. In this study, various amounts of three different carbons (carbon black, synthetic graphite particles, and carbon nanotubes) were added to polypropylene resin. The resulting single‐filler composites were tested for electrical resistivity (1/electrical conductivity). The effects of single fillers and combinations of the different carbon fillers were studied via a factorial design. The percolation threshold was 1.4 vol % for the composites containing only carbon black, 2.1 vol % for those containing only carbon nanotubes, and 13 vol % for those containing only synthetic graphite particles. The factorial results indicate that the composites containing only single fillers (synthetic graphite followed closely by carbon nanotubes and then carbon black) caused a statistically significant decrease in composite electrical resistivity. All of the composites containing combinations of different fillers had a statistically significant effect that increased the electrical resistivity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009
Keywords:composites  fillers  injection molding  nano‐composites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号