首页 | 本学科首页   官方微博 | 高级检索  
     


EM-GPA: Generalized Procrustes analysis with hidden variables for 3D shape modeling
Authors:Jungchan Cho  Minsik Lee  Chong-Ho Choi  Songhwai Oh
Affiliation:Department of Electrical and Computer Engineering, ASRI, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 151-744, Republic of Korea
Abstract:Aligning shapes is essential in many computer vision problems and generalized Procrustes analysis (GPA) is one of the most popular algorithms to align shapes. However, if some of the shape data are missing, GPA cannot be applied. In this paper, we propose EM-GPA, which extends GPA to handle shapes with hidden (missing) variables by using the expectation-maximization (EM) algorithm. For example, 2D shapes can be considered as 3D shapes with missing depth information due to the projection of 3D shapes into the image plane. For a set of 2D shapes, EM-GPA finds scales, rotations and 3D shapes along with their mean and covariance matrix for 3D shape modeling. A distinctive characteristic of EM-GPA is that it does not enforce any rank constraint often appeared in other work and instead uses GPA constraints to resolve the ambiguity in finding scales, rotations, and 3D shapes. The experimental results show that EM-GPA can recover depth information accurately even when the noise level is high and there are a large number of missing variables. By using the images from the FRGC database, we show that EM-GPA can successfully align 2D shapes by taking the missing information into consideration. We also demonstrate that the 3D mean shape and its covariance matrix are accurately estimated. As an application of EM-GPA, we construct a 2D + 3D AAM (active appearance model) using the 3D shapes obtained by EM-GPA, and it gives a similar success rate in model fitting compared to the method using real 3D shapes. EM-GPA is not limited to the case of missing depth information, but it can be easily extended to more general cases.
Keywords:Shape alignment  Procrustes analysis  Non-rigid structure from motion  Virtual 3D shape model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号