首页 | 本学科首页   官方微博 | 高级检索  
     


Lattice-Mismatched $hbox{In}_{0.4}hbox{Ga}_{0.6} hbox{As}$ Source/Drain Stressors With In Situ Doping for Strained $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ Channel n-MOSFETs
Abstract: We report the first demonstration of a strained $hbox{In}_{0.53} hbox{Ga}_{0.47}hbox{As}$ channel n-MOSFET featuring in situ doped $hbox{In}_{0.4}hbox{Ga}_{0.6}hbox{As}$ source/drain (S/D) regions. The in situ silicondoped $hbox{In}_{0.4}hbox{Ga}_{0.6}hbox{As}$ S/D was formed by a recess etch and a selective epitaxy of $hbox{In}_{0.4}hbox{Ga}_{0.6}hbox{As}$ in the S/D by metal–organic chemical vapor deposition. A lattice mismatch of $sim$0.9% between $ hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ and $hbox{In}_{0.4} hbox{Ga}_{0.6}hbox{As}$ S/D gives rise to lateral tensile strain and vertical compressive strain in the $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ channel region. In addition, the in situ Si-doping process increases the carrier concentration in the S/D regions for series-resistance reduction. Significant drive-current improvement over the control n-MOSFET with Si-implanted $hbox{In}_{0.53}hbox{Ga}_{0.47}hbox{As}$ S/D regions was achieved. This is attributed to both the strain-induced band-structure modification in the channel that reduces the effective electron mass along the transport direction and the reduction in the S/D series resistance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号