首页 | 本学科首页   官方微博 | 高级检索  
     


An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data
Authors:Twellmann Thorsten  Lichte Oliver  Nattkemper Tim W
Affiliation:Applied Neuroinformatics Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany. ttwellma@techfak.uni-bielefeld.de
Abstract:Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has become an important source of information to aid cancer diagnosis. Nevertheless, due to the multi-temporal nature of the three-dimensional volume data obtained from DCE-MRI, evaluation of the image data is a challenging task and tools are required to support the human expert. We investigate an approach for automatic localization and characterization of suspicious lesions in DCE-MRI data. It applies an artificial neural network (ANN) architecture which combines unsupervised and supervised techniques for voxel-by-voxel classification of temporal kinetic signals. The algorithm is easy to implement, allows for fast training and application even for huge data sets and can be directly used to augment the display of DCE-MRI data. To demonstrate that the system provides a reasonable assessment of kinetic signals, the outcome is compared with the results obtained from the model-based three-time-points (3TP) technique which represents a clinical standard protocol for analysing breast cancer lesions. The evaluation based on the DCE-MRI data of 12 cases indicates that, although the ANN is trained with imprecisely labeled data, the approach leads to an outcome conforming with 3TP without presupposing an explicit model of the underlying physiological process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号