首页 | 本学科首页   官方微博 | 高级检索  
     


Establishment of All Digital Closed-Loop Interferometric Fiber-Optic Gyroscope and Scale Factor Comparison for Open-Loop and All Digital Closed-Loop Configurations
Abstract: This paper covers the design details of an all digital closed-loop interferometric fiber-optic gyroscope (ADCL-IFOG) prototype, constructed in TUBITAK UME, and scale factor comparison between open-loop and ADCL-IFOG prototypes with sine wave biasing modulation. The output of demodulation circuit, proportional to the applied rotation rate, was sampled by AD7714YN analog-to-digital converter (ADC), operated in 16 bit resolution. Error voltage, generated by microcomputer – controlled LTC 1667CG, 14 bit digital to analog converter (DAC), was sent to the phase modulator through a linear summing circuit to make Sagnac Phase Shift zero, depending on the rotation direction. For this implementation, the ultimate rotation rate of 1.84 ($^{circ}/{hbox{h}}$ ) was nullified. The averaged sensitivity of the proposed closed-loop IFOG in unit of error voltage applied to the phase modulator was determined as 132.65 $mu hbox{V}/(^{circ}/{hbox{h}}$ ). The scale factors of both the open-loop and ADCL-IFOG prototypes were compared in a range of 1–15270 ( $^{circ}/hbox{h}$) rotation rate, corresponding to Sagnac Phase Shifts varying from 0.00115 ( $^{circ}$) to 17.57448 ( $^{circ}$). The maximum peak to peak noise and the bias stability of ADCL-IFOG prototype were determined as 4.97 ($^{circ}/hbox{h}$ ) and 1.48 ($^{circ}/hbox{h}$ ) at 23.0$~^{circ}hbox{C}$ , respectively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号