首页 | 本学科首页   官方微博 | 高级检索  
     


Technical demand response potentials of the integrated steelmaking site of Tata Steel in IJmuiden
Authors:Arzu Feta  Machteld van den Broek  Wina Crijns-Graus  Gerard Jägers
Affiliation:1.Tata Steel Netherlands,Velsen-Noord,The Netherlands;2.Copernicus Institute of Sustainable Development,Utrecht University,Utrecht,The Netherlands
Abstract:Power generation from intermittent renewable energy sources in northwest Europe is expected to increase significantly in the next 20 years. This reduces the predictability of electricity generation and increases the need for flexibility in electricity demand. Data on demand response (DR) capacities of electricity-intensive consumers is limited for most countries. In this paper, we evaluate the DR potential that can be provided to the Dutch national grid by the integrated steelmaking site of Tata Steel in IJmuiden (TSIJ). TSIJ generates electricity from its works arising gases (WAGs). The DR potentials are evaluated by using a linear optimisation model that calculates the optimal allocation of WAGs of TSIJ in case of a call for DR by the transmission system operator. The optimisation is done subject to the technical constraints of the WAG distribution network, WAG storage capacities, the on-site demand for WAGs and the ramp-up rate of the power plant that runs on WAGs. Results show that TSIJ can supply 10 MW for two programme time units (equal to 15-min period in the Netherlands) of positive DR capacity (demand reduction) with an availability rate of 97%. This is not sufficient for participating in the current emergency capacity programs in the Netherlands, which require at least 20 MW for longer than one programme time unit. Tata Steel can provide 20 MW DR capacity with an availability rate of 65%. The negative DR capacity (demand increase) of Tata Steel in IJmuiden is found to be 20 MW supplied for three programme time units and four programme time units with doubling of blast furnace gas storage capacities.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号