首页 | 本学科首页   官方微博 | 高级检索  
     


Random walk-based fuzzy linear discriminant analysis for dimensionality reduction
Authors:Mingbo Zhao  Tommy W. S. Chow  Zhao Zhang
Affiliation:1. Electronic Engineering Department, City University of Hong Kong, Kowloon, Hong Kong
Abstract:Dealing with high-dimensional data has always been a major problem with the research of pattern recognition and machine learning, and linear discriminant analysis (LDA) is one of the most popular methods for dimensionality reduction. However, it suffers from the problem of being too sensitive to outliers. Hence to solve this problem, fuzzy membership can be introduced to enhance the performance of algorithms by reducing the effects of outliers. In this paper, we analyze the existing fuzzy strategies and propose a new effective one based on Markov random walks. The new fuzzy strategy can maintain high consistency of local and global discriminative information and preserve statistical properties of dataset. In addition, based on the proposed fuzzy strategy, we then derive an efficient fuzzy LDA algorithm by incorporating the fuzzy membership into learning. Theoretical analysis and extensive simulations show the effectiveness of our algorithm. The presented results demonstrate that our proposed algorithm can achieve significantly improved results compared with other existing algorithms.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号