首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进PSO-SMO的模型参数辨识及应用
引用本文:刘林,王刚,杨永洪,翟永杰. 基于改进PSO-SMO的模型参数辨识及应用[J]. 信息技术, 2011, 0(7): 121-124,129
作者姓名:刘林  王刚  杨永洪  翟永杰
作者单位:1. 华北电力大学自动化系,保定,071003
2. 二滩水力发电厂,攀枝花,617000
摘    要:目前,大多数智能辨识方法只考虑辨识系统的输出值,不能辨识模型的参数.对此,研究了基于线性核函数支持向量机的辨识算法,对模型参数和输出同时进行辨识.在此基础上,采用改进的PSO-SMO算法以提高辨识速度和精度.将该方法用于ARX模型和长期预测模型的参数辨识中,结果表明,该算法比其他算法具有更高的准确性.

关 键 词:PSO-SMO  参数辨识  ARX模型  长期预测模型

Model parameters identification and application based on improved PSO-SMO
LIU Lin,WANG Gang,YANG Yong-hong,ZHAI Yong-jie. Model parameters identification and application based on improved PSO-SMO[J]. Information Technology, 2011, 0(7): 121-124,129
Authors:LIU Lin  WANG Gang  YANG Yong-hong  ZHAI Yong-jie
Affiliation:1(1.Department of Automation,North China Electric Power University,Baoding 071003,China; 2.Ertan Hydropower Station,Panzhihua 617000,China)
Abstract:At present,the most intelligent identification methods can only identify the output of a system,instead of the model parameters.For this problem,this paper studied the identification algorithm of SVM based on linear kernel function.In the concrete realization,it used the improved PSO-SMO algorithm to improve identification speed and precision.Using this method to identify the parameters of ARX model and long-term prediction model,the simulation results show that this algorithm has a higher accuracy than that of other method.
Keywords:PSO-SMO  parameters identification  ARX model  long-term prediction model
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号