首页 | 本学科首页   官方微博 | 高级检索  
     


Mean-shape vector quantizer for ECG signal compression
Authors:JL Cárdenas-Barrera  JV Lorenzo-Ginori
Affiliation:Electrical Engineering Faculty, Universidad Central de Las Villas, Villa Clara, Cuba.
Abstract:A direct waveform mean-shape vector quantization (MSVQ) is proposed here as an alternative for electrocardiographic (ECG) signal compression. In this method, the mean values for short ECG signal segments are quantized as scalars and compression of the single-lead ECG by average beat substraction and residual differencing their waveshapes coded through a vector quantizer. An entropy encoder is applied to both, mean and vector codes, to further increase compression without degrading the quality of the reconstructed signals. In this paper, the fundamentals of MSVQ are discussed, along with various parameters specifications such as duration of signal segments, the wordlength of the mean-value quantization and the size of the vector codebook. The method is assessed through percent-residual-difference measures on reconstructed signals, whereas its computational complexity is analyzed considering its real-time implementation. As a result, MSVQ has been found to be an efficient compression method, leading to high compression ratios (CR's) while maintaining a low level of waveform distortion and, consequently, preserving the main clinically interesting features of the ECG signals. CR's in excess of 39 have been achieved, yielding low data rates of about 140 bps. This compression factor makes this technique especially attractive in the area of ambulatory monitoring.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号