首页 | 本学科首页   官方微博 | 高级检索  
     


The influence of surface defects on ethanol dehydrogenation versus dehydration on the UO2(1 1 1) surface
Authors:S. V. Chong   M. A. Barteau  H. Idriss
Affiliation:

a Department of Chemistry, Materials Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand

b Department of Chemical Engineering, University of Delaware, Newark, DE 19716, USA

Abstract:The decomposition of ethanol has been investigated on Ar+-sputtered surfaces of a UO2(1 1 1) single crystal. X-ray photoelectron spectroscopy (XPS) of the U 4f peaks after sputtering for 1 h showed the presence of two distinct oxidation states: U4+ (U 4f7/2 at 380.2 eV) and U0 (U 4f7/2 at 377.4 eV). Upon ethanol exposure at room temperature, the peak at 377.4 eV was attenuated, indicating that U0 sites were oxidized to Ux+i(x≤4). The presence of a mixture of oxidation states on the surface influenced the reaction products observed during temperature programmed desorption (TPD). While ethylene and acetaldehyde desorbed in one temperature domain (at 560 K) from stoichiometric UO2(1 1 1), an additional desorption domain (at 475 K) was observed over the substoichiometric surface. The ratio of acetaldehyde to ethylene produced was different in the two temperature domains. While this ratio was near unity for the 560 K domain, it decreased to ca. 0.5 for the 475 K peaks on the substoichiometric surface. The lower temperature reaction channel is likely associated with surface oxygen vacancies, as it leads to greater oxygen abstraction, forming ethylene from surface ethoxide species.
Keywords:Ethanol dehydrogenation   Ar+-sputtered surfaces   UO2(1 1 1)   Ethanol dehydration   Surface oxidation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号