首页 | 本学科首页   官方微博 | 高级检索  
     


Comparison of pneumatic jets and tabs for Active Aerodynamic Load Control
Authors:Myra Blaylock  Raymond Chow  Aubryn Cooperman  C P van Dam
Affiliation:Department of Mechanical and Aerospace Engineering, University of California, , California, 95616 USA
Abstract:A fast, efficient way to control loads on utility scale wind turbines is important for the growth of the wind industry. Microtabs and microjets are two Active Aerodynamic Load Control devices, which address this need. Both act perpendicular to the surface of the airfoil, and these actively controlled devices are used to mitigate changes in aerodynamic loading experienced by wind turbine rotors due to wind gusts, wind shear, or other atmospheric phenomena. This work explores the aerodynamic effects of microjets and then compares them to those of microtabs. Flow around an airfoil with an activated microjet at the trailing edge has been simulated using the Reynolds‐averaged Navier–Stokes solver OVERFLOW‐2. Using a Chimera overset grid topology, a microjet has been placed near the trailing edge of the lower surface of a NACA 0012 airfoil. For a jet velocity about half of the freestream velocity, the microjet can change the lift up to ΔCL = 0.2, but the amount of change varies with the momentum coefficient of the jet. The change in lift is not symmetric for positive and negative angles of attack due to changes in the boundary layer thickness with angle of attack. Increasing the Reynolds number reduces the effectiveness of the microjet only slightly. The effects of jet velocity, jet activation time, and airfoil angle of attack on airfoil lift, drag, and pitching moment are compared with previous work, which illustrates the deployment of a microtab at the 95% chord location of a NACA 0012 airfoil. This study shows that microjets and microtabs have very similar responses in lift and pitching moment, but the drag for the microjet is noticeably lower. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:unsteady aerodynamics  load control  normal surface blowing  microjet  microtab  simulations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号