首页 | 本学科首页   官方微博 | 高级检索  
     

基于二元向量矩阵算法的粗糙集方法
引用本文:耿志强,朱群雄. 基于二元向量矩阵算法的粗糙集方法[J]. 石油化工高等学校学报, 2007, 20(3): 1-4
作者姓名:耿志强  朱群雄
作者单位:北京化工大学信息科学与技术学院,北京,100029
基金项目:北京化工大学校科研和教改项目;北京教育委员会项目
摘    要:根据向量矩阵与向量之间的映射关系,研究了基于二元向量矩阵算法的粗糙近似、属性约简以及最优属性约简集的获取。提出基于二元向量矩阵的属性相对约简、最优属性集获取算法,解决原有矩阵算法属性核不一致性和属性约简集选择的盲目性。并提出了二元向量压缩矩阵算法,降低了原有矩阵算法的复杂度。通过实例分析,证明所提出的相关算法的有效性,为研究粗糙集数据挖掘提供了一种可行有效的计算方法。

关 键 词:粗糙集  二元向量矩阵  属性约简  信息压缩
文章编号:1006-396X(2007)03-0001-04
修稿时间:2007-02-05

Rough Set Based on Binary Vector Matrix Computing
GENG Zhi-qiang,ZHU Qun-xiong. Rough Set Based on Binary Vector Matrix Computing[J]. Journal of Petrochemical Universities, 2007, 20(3): 1-4
Authors:GENG Zhi-qiang  ZHU Qun-xiong
Abstract:From the mapping relationship between information vector matrix and relative vectors,rough approximation,attribute relative reductions and selecting optimal attribute reductions set algorithms based on binary vector matrix were proposed.Inconsistency of acquiring attribute kernel and blindness of selecting attribute reductions are overcome.On the foundation of studying binary vector matrix algorithms,binary vector compression matrix algorithm was also put forward,and the algorithm complexity was decreased faster than the original matrix algorithm.By the example analysis,the validity of the proposed algorithms was verified,the feasible computing way is presented for studying rough set further.
Keywords:Rough set  Binary vector matrix  Attribute reductions  Information compression
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号