首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation of flank milling processes
Authors:A Larue  Y Altintas
Affiliation:Manufacturing Automation Laboratory, Department of Mechanical Engineering, The University of British Columbia, 2324 Main Mall, Vancouver, BC, Canada V6T 1Z4
Abstract:The paper presents prediction of cutting forces when flank milling ruled surfaces with tapered, helical, ball end mills. The geometric model of the workpiece is imported from standard CAD systems, and the tapered helical ball end mill is modeled as the combination of sphere and cone primitives in ACIS© solid modeling environment. The intersection of cutter and part with a ruled surface is evaluated, and the cutter entry into and exit angles from the work material are modeled, and stored as a function of tool center coordinates along the path. The cutter entry and exit angles, the immersion angles, are used as boundary conditions in predicting the cutting forces along the path. The methodology allows prediction of cutting load distribution on the tool and part, as well optimization of machining cycle times by scheduling the feedrate in such a way that torque, power and static deflections can be maintained at safe levels.
Keywords:Flank milling  Feedrate optimization  Various cutter workpiece engagement
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号