首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于索引的概念格分布式构造方法
引用本文:谭喆,胡学钢. 一种基于索引的概念格分布式构造方法[J]. 计算机应用, 2009, 29(5): 1409-1411
作者姓名:谭喆  胡学钢
作者单位:合肥工业大学,计算机与信息学院,合肥,230009
摘    要:现有的概念格并行/分布式构造算法在处理较大规模数据时,需要搜索大量不相关概念,降低了算法性能。为此,提出了一种基于索引的概念格分布式构造方法——LCBI,插入新概念时先利用索引快速找出新概念的极大相关概念,再对所有极大相关概念的子概念进行自顶向下地并行搜索以找出它们的交叉子概念,从而减少了搜索范围。理论分析和实验表明,在处理大规模稠密数据时,LCBI比其他分布式算法具有较明显的优势。

关 键 词:数据挖掘  概念格  分布式构造  概念格合并  Data Mining (DM)  concept lattice  distributed construction  lattices combination
收稿时间:2008-11-05
修稿时间:2008-12-25

Distributed algorithm for constructing concept lattice based on index
TAN Zhe,HU Xue-gang. Distributed algorithm for constructing concept lattice based on index[J]. Journal of Computer Applications, 2009, 29(5): 1409-1411
Authors:TAN Zhe  HU Xue-gang
Affiliation:School of Computer and Information;Hefei University of Technology;Hefei Anhui 230009;China
Abstract:The presented concept lattice parallel/distributed algorithm needs to search plenty of non-related concepts when dealing with a large scale data, which reduces the performance of the algorithm. A distributed concept lattice construction algorithm based on index named LCBI was put forward. When inserting a new concept, it quickly found all the greatest correlative concepts of the new concept using index, then found out cross-sub-concepts of child nodes of all greatest correlative concepts using parallel and top-down search, which decreased the search area. Theoretical analysis and experimental results show that LCBI outperforms the other distributed algorithms when dealing with dense context.
Keywords:data mining  concept lattice  distributed construction  lattices combination  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号