首页 | 本学科首页   官方微博 | 高级检索  
     

时段划分的多向主元分析间歇过程监测及故障变量追溯
引用本文:王姝,常玉清,杨洁,王福利,冯淑敏. 时段划分的多向主元分析间歇过程监测及故障变量追溯[J]. 控制理论与应用, 2011, 28(2): 149-156
作者姓名:王姝  常玉清  杨洁  王福利  冯淑敏
作者单位:1. 东北大学,流程工业综合自动化教育部重点实验室,辽宁,沈阳,110004;东北大学信息科学与工程学院,辽宁,沈阳,110004
2. 东北大学信息科学与工程学院,辽宁,沈阳,110004
基金项目:国家自然科学基金资助项目(61074074); 国家“973”计划子课题资助项目(2009CB320601).
摘    要:针对间歇过程的多时段特性,提出一种生产过程操作时段划分方法.该方法利用反映过程特性变化的负载矩阵以及主成份矩阵的变化实现了间歇过程子时段的两步划分.提出了基于加权负载向量夹角余弦的负载矩阵相似性度量以及基于加权奇异值变化的奇异值矩阵相似性度量方法,以更客观的反映负载矩阵以及奇异值矩阵的相似性,进而更准确的判断过程特性的变化.根据同一操作子时段的过程特性,其负载矩阵和奇异值矩阵相似性较大的特点,实现了生产过程的子时段划分.将基于子时段划分的多向主元分析(MPCA)建模应用于三水箱系统的在线监测和故障变量追溯,实验结果验证了该方法的有效性.

关 键 词:间歇过程  主成份分析  子时段划分  过程监测  故障变量追溯
收稿时间:2009-10-12
修稿时间:2010-04-27

Multiway principle component analysis monitoring and fault variable detection based on substage separation for batch processes
WANG Shu,CHANG Yu-qing,YANG Jie,WANG Fu-li and FENG Shu-min. Multiway principle component analysis monitoring and fault variable detection based on substage separation for batch processes[J]. Control Theory & Applications, 2011, 28(2): 149-156
Authors:WANG Shu  CHANG Yu-qing  YANG Jie  WANG Fu-li  FENG Shu-min
Affiliation:Key Laboratory of Integrated Automation of Process Industry, Northeastern University; School of Information Science & Engineering, Northeastern University,Key Laboratory of Integrated Automation of Process Industry, Northeastern University; School of Information Science & Engineering, Northeastern University,School of Information Science & Engineering, Northeastern University,Key Laboratory of Integrated Automation of Process Industry, Northeastern University; School of Information Science & Engineering, Northeastern University,School of Information Science & Engineering, Northeastern University
Abstract:According to the multistage characteristics of the batch process, we propose a new stage separation method for the production process. Based on the variation in loading matrices and principal component matrices which reflect the evolvement of the underlying process behavior, a two-step substage separation is proposed. To objectively show the similarity between the loading matrices and the similarity between the principal component matrices, two similarity measurement methods are applied to estimate the variation of the process characteristic with higher accuracy. These two methods are respectively based on the weighted cosine of the angle between loading vectors, and based on the weighted absolute value of the singular value variation. Process substage separation is realized because the loading matrices and the singular value matrices in the same operation substage are with great similarity. Based on the improved stages separation method, the multiway principle component analysis(MPCA) modeling is applied to online monitoring and fault variable detection in a three-tank system. The experimental results verify the effectiveness of the method.
Keywords:batch processes   principal component analysis(PCA)   substage separation   process monitoring   fault variable detection
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号