首页 | 本学科首页   官方微博 | 高级检索  
     


Universal smoothing factor selection in density estimation: theory and practice
Authors:Duc Devroye  J. Beirlant  R. Cao  R. Fraiman  P. Hall  M. C. Jones  Gábor Lugosi  E. Mammen  J. S. Marron  C. Sánchez-Sellero  J. de Uña  F. Udina  L. Devroye
Affiliation:1. School of Computer Science, McGill University, H3A 2K6, Montreal, Canada
2. Katholieke Universiteit Leuven, Belgium
3. Universidad de la Coru?a, Spain
4. Universidad de la República, Uruguay
5. The Australian National University, Australia
6. The Open University, UK
7. Universitat Pompeu Fabra, Spain
8. Universit?t Heidelberg, Germany
9. University of North Carolina, USA
10. Universidad de Santiago de Compostela, Spain
11. Universidad de Vigo, Spain
12. Universitat Pompeu Fabra, Spain
Abstract:In earlier work with Gabor Lugosi, we introduced a method to select a smoothing factor for kernel density estimation such that, forall densities in all dimensions, theL 1 error of the corresponding kernel estimate is not larger than 3+∈ times the error of the estimate with the optimal smoothing factor plus a constant times $sqrt {log n/n}$ , wheren is the sample size, and the constant only depends on the complexity of the kernel used in the estimate. The result is nonasymptotic, that is, the bound is valid for eachn. The estimate uses ideas from the minimum distance estimation work of Yatracos. We present a practical implementation of this estimate, report on some comparative results, and highlight some key properties of the new method.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号