首页 | 本学科首页   官方微博 | 高级检索  
     


Pulse height defect in pCVD and scCVD diamond based detectors
Authors:C Tuve'  R Potenza  M Chiorboli  MG Grimaldi  F La Rosa  F Raimondo  M Marinelli  E Milani  A Tucciarone  G Verona Rinati  M Donato  G Faggio  G Messina  S Santangelo  G Pucella
Affiliation:aDepartment of Physics and Astronomy, University of Catania, Italy;bINFN, Sezione di Catania, Italy;cDepartment of Mechanical Engineering, University of Rome “Tor Vergata”, Rome, Italy;dDepartment of Mechanics and Materials, University of Reggio Calabria, Italy;eCNR, Rome, Italy;fCNR-Matis, Italy
Abstract:Polycrystalline (pCVD) and single crystal (scCVD) diamond films grown from Chemical Vapour Deposition (CVD), if sufficiently pure at Raman analysis, are very good materials for beam or flux monitors inside accelerators or nuclear reactors. This is because they are very hard to damage in high radiation fields and very resistant to high temperatures. Films of pCVD diamond are, however, not so good as spectroscopy detectors due to inhomogeneities induced by their growth in grains with the consequent presence of grain boundaries which worsen their energy resolution. The latter can be significantly improved by growing scCVD diamond films onto HPHT synthetic diamond substrates. We have shown that it is possible to measure the density of defects inside diamond specimens using as probes suitable penetrating nuclear radiations. With the preliminary results reported here we'll show that, bombarding CVD diamond films grown at Roma “Tor Vergata” with energetic protons and 4He, 6Li and 12C ions produced in the accelerators of Catania laboratories, the pulse height defects are higher than those in silicon detectors and likewise well described by a power law in the deposited energy. Furthermore, we'll show that pulse heights for the same particles seem to depend on the duration of the measurement, thus exhibiting a sort of depolarization of the insulator when exposed to the electric voltage which makes it a particle detector.
Keywords:Single crystal CVD diamond detectors  Charge collection efficiency = 100%
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号