首页 | 本学科首页   官方微博 | 高级检索  
     


Dissection of the sequence specificity of the Holliday junction endonuclease CCE1
Authors:MJ Schofield  DM Lilley  MF White
Affiliation:CRC Nucleic Acid Structure Group, Department of Biochemistry, University of Dundee, U.K.
Abstract:CCE1 is a Holliday (four-way DNA) junction-specific endonuclease which resolves mitochondrial DNA recombination intermediates in Saccharomycescerevisiae. The junction-resolving enzymes are a diverse class, widely distributed in nature from viruses to higher eukaryotes. In common with most other junction-resolving enzymes, the cleavage activity of CCE1 is nucleotide sequence-dependent. We have undertaken a systematic study of the sequence specificity of CCE1, using a single-turnover kinetic assay and a panel of synthetic four-way DNA junction substrates. A tetranucleotide consensus cleavage sequence 5'-ACT downward arrowA has been identified, with specificity residing mainly at the central CT dinucleotide. Equilibrium constants for CCE1 binding to four-way junctions are unaffected by sequence variations, suggesting that substrate discrimination occurs predominantly in the transition state complex. CCE1 cuts most efficiently at the junction center, but can also cleave the DNA backbone at positions one nucleotide 3' or 5' of the point of strand exchange, suggesting a significant degree of conformational flexibility in the CCE1:junction complex. Introduction of base analogues at single sites in four-way junctions has allowed investigation of the sequence specificity of CCE1 in finer detail. In particular, the N7 moiety of the guanine base-pairing with the cytosine of the consensus sequence appears to be crucial for catalysis. The functional significance of sequence specificity in junction-resolving enzymes is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号