首页 | 本学科首页   官方微博 | 高级检索  
     

基于CRF和错误驱动的中心词识别
引用本文:田卫东,李亚娟. 基于CRF和错误驱动的中心词识别[J]. 计算机应用研究, 2013, 30(8): 2345-2348
作者姓名:田卫东  李亚娟
作者单位:合肥工业大学 计算机与信息学院,合肥,230009
基金项目:国家“863”计划资助项目(2012AA011005); 国家自然科学基金资助项目(61273292)
摘    要:针对中文问题分类的中心词识别不准确的问题, 提出了一种基于条件随机场(CRF)和错误驱动学习相结合的识别方法。该方法采用CRF模型对问题的中心词进行初始标注, 依据词的上下文信息用错误驱动的学习方法对其标注结果进行纠正。在训练有序规则的过程中, 为了减少训练时间, 结合中心词的特点对错误驱动算法进行了改进。实验结果表明, 该方法在一定程度上提高了中心词的标注精度, 达到88%。

关 键 词:问题分类  中心词  条件随机场(CRF)  错误驱动学习(TBL)  上下文信息  有序规则

Recognition of focus based on CRF and TBL
TIAN Wei-dong,LI Ya-juan. Recognition of focus based on CRF and TBL[J]. Application Research of Computers, 2013, 30(8): 2345-2348
Authors:TIAN Wei-dong  LI Ya-juan
Affiliation:School of Computer & Information, Hefei University of Technology, Hefei 230009, China
Abstract:Focusing on inaccurate recognition of focus in Chinese question classification, this paper presented a method based on condition random fields model (CRF) and TBL. First, it used the CRF model in tagging focuses in the questions initially. Then, it rectified the initial tagging results according to the contextual information with TBL algorithm. Besides, during the process of training ordered rules, it used an improvement on TBL algorithm based on the features of focus in order to reduce the training time. The experimental results show that the method can improve the accuracy rate of focus tagging to a great extend, and up to 88%.
Keywords:question classification  focus  condition random fields model (CRF)  transformation-based error-driven learning(TBL)  contextual information  ordered rules
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号