首页 | 本学科首页   官方微博 | 高级检索  
     


Intracellular injection of a Ca2+ chelator prevents generation of anoxic LTP
Authors:V Crépel  Y Ben-Ari
Affiliation:Université René Descartes, Paris, France.
Abstract:1. The effects of intracellular injection of Ca2+ chelator 1,2-bis (2-aminophenoxy) ethane N,N,N',N'-tetra-acetic acid (BAPTA, 50 mM) on anoxia-aglycemia-induced long-term potentiation (LTP) were investigated in the CA1 region of hippocampal slices with the use of extra- and intracellular recording techniques. Experiments were performed in artificial cerebrospinal fluid (ACSF) containing 10 microM bicuculline and 10 microM 6-cyano-7-nitroquinoxaline- 2,3-dione (CNQX) to pharmacologically isolate N-methyl-D-aspartate (NMDA)-receptor-mediated responses. NMDA-receptor-mediated excitatory postsynaptic potentials (EPSPs) and field potentials were evoked by stimulation of the Schaffer collateral/commissural pathway in the presence of 0.3 mM MgCl2 and 10 microM glycine to promote NMDA-receptor-mediated responses. Under these conditions, application of 50 microM D-2-amino-phosphono-valerate (D-APV) abolished EPSPs and field potentials. 2. Anoxic-aglycemic (AA) episodes (duration 2-2.5 min) potentiated the initial slope (measured within 3 ms from the onset of the synaptic responses) of EPSPs by 108 +/- 14.3% (mean +/- SE, P = 0.0012, n = 7). We refer to this LTP of NMDA-receptor-mediated synaptic responses as anoxic LTP. 3. Intracellular injection of the Ca2+ chelator BAPTA (with the intracellular recording electrode filled with 50 mM BAPTA in 3 M KCl) prevented anoxic LTP. Thirty to 40 min after the AA episode, in BAPTA-loaded cells, the initial slope of the EPSPs was not significantly changed (+7.12 +/- 5%, P = 0.35, n = 5). In contrast, the initial slope of the field potentials, measured at the same time in the same slices, was persistently increased (+49 +/- 2.8%, P = 0.0022, n = 5). 4. High-frequency tetanic stimulation (100 Hz for 500 ms, 2 times, 30 s apart) of the Schaffer collateral/commissural pathway, applied > 0.5 h after the AA episode, induced an additional significant and persistent increase in the initial slope of the field potential (tetanic LTP, +35.4 +/- 9.8%, P = 0.012, n = 5). In BAPTA-loaded cells, there was no further change in the initial slope of the EPSP (+3.9 +/- 3.4%, P = 0.205, n = 5) after the tetanic stimulation. 5. We also report that AA episodes or tetanic stimulation induced a persistent increase in a late synaptic component that was blocked by 50 microM D-APV. This late component was mediated polysynaptically, because its time to peak decreased with increasing stimulation intensities and it was strongly reduced by high-divalent-cation superfusate (ACSF containing 7 mM Ca2+). This component, which had a delay of approximately 8-30 ms, contaminated mainly the peak amplitude and the decay of the monosynaptic response without affecting its initial slope. Thus the measure of the initial slope takes into account only the early phase of the monosynaptic response. 6. We conclude that 1) a rise in intracellular Ca2+ is necessary to generate anoxic LTP of NMDA-receptor-mediated responses, as is the case for tetanic LTP; and 2) in the presence of bicuculline and low extracellular Mg2+, AA episodes and tetanic stimulations induced a long-lasting enhancement of a polysynaptic component mediated or controlled by NMDA receptors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号