首页 | 本学科首页   官方微博 | 高级检索  
     


Nanostructured antifouling poly(ethylene glycol) films for silicon-based microsystems
Authors:Sharma Sadhana  Desai Tejal A
Affiliation:Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA.
Abstract:The creation of antifouling surfaces is one of the major prerequisites for silicon-based micro-electrical-mechanical systems for biomedical and analytical applications (known as BioMEMS). Poly(ethylene glycol) (PEG), a water-soluble, nontoxic, and nonimmunogenic polymer has the unique ability to reduce nonspecific protein adsorption and cell adhesion and, therefore, is generally coupled with a wide variety of surfaces to improve their biocompatibility. To this end, we have analyzed PEG thin films of various grafting densities (i.e., number of PEG chains per unit area) coupled to silicon using a single-step PEG-silane coupling reaction scheme using variable-angle ellipsometry. Initial PEG concentration and coupling time were varied to attain different grafting densities. These data were theoretically analyzed to understand the phenomenon of PEG film formation. Furthermore, all the PEG films were evaluated for their ability to control biofouling using albumin and fibrinogen as the model proteins. PEG thin films formed by using higher PEG concentrations ( > or = 10 mM PEG) or coupling time ( > or = 1 h) demonstrated enhanced protein fouling resistance behavior. This analysis is expected to be useful to form PEG films of desired grafting density on silicon substrates for appropriate application.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号