首页 | 本学科首页   官方微博 | 高级检索  
     


Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites
Authors:Jane Maria Faulstich de Paiva  Elisabete Frollini
Abstract:Summary: The study and development of polymeric composite materials, especially using lignocellulosic fibers, have received increasing attention. This is interesting from the environmental and economical viewpoints as lignocellulosic fibers are obtained from renewable resources. This work aims to contribute to reduce the dependency on materials from nonrenewable sources, by utilizing natural fibers (sisal) as reinforcing agents and lignin (a polyphenolic macromolecule obtained from lignocellulosic materials) to partially substitute phenol in a phenol‐formaldehyde resin. Besides, it was intended to evaluate how modifications applied on sisal fibers influence their properties and those of the composites reinforced with them, mainly thermal properties. Sisal fibers were modified by either (i) mercerization (NaOH 10%), (ii) esterification (succinic anhydride), or (iii) ionized air treatment (discharge current of 5 mA). Composites were made by mould compression, of various sisal fibers in combination with either phenol‐formaldehyde or lignin‐phenol‐formaldehyde resins. Sisal fibers and composites were characterized by thermogravimetry (TG) and DSC to establish their thermal stability. Scanning electron microscopy (SEM) was used to investigate the morphology of unmodified and modified surface sisal fibers as well as the fractured composites surface. Dynamic mechanical thermoanalysis (DMTA) was used to examine the influence of temperature on the composite mechanical properties. The results obtained for sisal fiber‐reinforced phenolic and lignophenolic composites showed that the use of lignin as a partial substitute of phenol in phenolic resins in applications different from the traditional ones, as for instance in other than adhesives is feasible.
image

Micrograph of the impact fracture surface of phenolic composite reinforced with mercerized sisal fiber (500 X).

Keywords:differential scanning calorimetry (DSC)  dynamic mechanical thermoanalysis (DMTA)  fibers  lignin  phenolic‐matrix composites  sisal fibers  thermogravimetry (TG)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号