首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of multicast routing algorithms for real-timecommunication on high-speed networks
Authors:Salama  HF Reeves  DS Viniotis  Y
Affiliation:Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC;
Abstract:Multicast (MC) routing algorithms capable of satisfying the quality of service (QoS) requirements of real-time applications will be essential for future high-speed networks. We compare the performance of all of the important MC routing algorithms when applied to networks with asymmetric link loads. Each algorithm is judged based on the quality of the MC trees it generates and its efficiency in managing the network resources. Simulation results over random networks show that unconstrained algorithms are not capable of fulfilling the QoS requirements of real-time applications in wide-area networks. Simulations also reveal that one of the unconstrained algorithms, reverse path multicasting (RPM), is quite inefficient when applied to asymmetric networks. We study how combining routing with resource reservation and admission control improves the RPM's efficiency in managing the network resources. The performance of one semiconstrained heuristic, MSC, three constrained Steiner tree (CST) heuristics, Kompella, Pasquale, and Polyzos (1992), constrained adaptive ordering (CAO), and bounded shortest multicast algorithm (BSMA), and one constrained shortest path tree (CSPT) heuristic, the constrained Dijkstra heuristic (CDKS) are also studied. Simulations show that the semiconstrained and constrained heuristics are capable of successfully constructing MC trees which satisfy the QoS requirements of real-time traffic. However, the cost performance of the heuristics varies. The BSMA's MC trees are lower in cost than all other constrained heuristics. Finally, we compare the execution times of all algorithms, unconstrained, semiconstrained, and constrained
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号