首页 | 本学科首页   官方微博 | 高级检索  
     

电动汽车充电路径不确定优化调度
引用本文:周天沛,孙伟. 电动汽车充电路径不确定优化调度[J]. 电测与仪表, 2019, 56(12): 79-84
作者姓名:周天沛  孙伟
作者单位:徐州工业职业技术学院机电学院,江苏徐州,221140;中国矿业大学信控学院,江苏徐州,221008
基金项目:江苏省产学研合作计划项目(BY2016026-01);江苏省高校自然科学研究面上项目(16KJB480006)
摘    要:电动汽车充电路径优化调度中的很多参数变量都具有不确定性,传统的优化调度方法适用性较差。为解决该问题,不确定优化方法被应用到电动汽车充电路径优化调度中,由此建立了基于随机期望值的不确定优化调度模型。鉴于传统的粒子群优化算法容易陷于局部优化和收敛速度较慢,将模拟退火算法引入并组成混合智能算法进行模型求解。对比实验证明该混合智能算法能够有效减少电动汽车车主到充电站所用的行驶距离、在充电站的等待时间和充电时间。

关 键 词:电动汽车  充电路径  优化调度  不确定
收稿时间:2018-05-10
修稿时间:2018-05-10

Optimal scheduling of electric vehicles for charging route under uncertainty
Zhou Tianpei and Sun Wei. Optimal scheduling of electric vehicles for charging route under uncertainty[J]. Electrical Measurement & Instrumentation, 2019, 56(12): 79-84
Authors:Zhou Tianpei and Sun Wei
Affiliation:Xuzhou College of Industrial and Technology,China University of Mining and Technology
Abstract:The traditional optimal scheduling method has poor applicability in optimal scheduling of electric vehicles (EVs) for charging route because many parameter variables are uncertain. In view of the problem, uncertain optimization is applied to optimal scheduling of the EVs for charging route. Optimal scheduling model for charging route of the EVs based on random expected value is built. For the disadvantage that the particle swarm optimization algorithm is easy to fall into local optimization and the convergence speed is slow, the simulated annealing algorithm is introduced into the hybrid intelligent algorithm to solve the model. The comparison experiments show that the hybrid intelligent algorithm can effectively reduce the driving distance which the owners reach the charging station, waiting time and charging time at the charging station.
Keywords:Electric  vehicle (EV), charging  route, optimal  scheduling, uncertainty
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号