首页 | 本学科首页   官方微博 | 高级检索  
     


Suppressor gene analysis reveals an essential role for sphingolipids in transport of glycosylphosphatidylinositol-anchored proteins in Saccharomyces cerevisiae
Authors:M Skrzypek  RL Lester  RC Dickson
Affiliation:Department of Biochemistry, Lucille P. Markey Cancer Center, University of Kentucky Medical Center, Lexington 40536-0084, USA.
Abstract:Sphingolipids are normally necessary for growth of Saccharomyces cerevisiae cells, but mutant strains that bypass the need for sphingolipids have been identified. Such bypass mutants fail to grow under stressful conditions, including low pH (pH 4.1), when they lack sphingolipids. To begin to understand why sphingolipids seem to be necessary for coping with low-pH stress, we screened a genomic library and selected a suppressor gene, CWP2 (cell wall protein 2), that when present in multiple copies partially compensates for the lack of sphingolipids and enhances survival at low pH. To explain these results, we present evidence that sphingolipids are required for a normal rate of transport of glycosylphosphatidylinositol (GPI)-anchored proteins, including Cwp2 and Gas1/Gpg1, from the endoplasmic reticulum (ER) to the Golgi apparatus. The effect of sphingolipids is specific for transport of GPI-anchored proteins because no effect on the rate of transport of carboxypeptidase Y, a non-GPI-anchored protein, was observed. Since the Gasl protein accumulated in the ER with a GPI anchor in cells lacking sphingolipids, we conclude that sphingolipids are not necessary for anchor attachment. Therefore, sphingolipids must be necessary for a step in formation of COPII vesicles or for their transport to the Golgi apparatus. Our data identify the Cwp2 protein as a vital component in protecting cells from the stress of low pH.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号