首页 | 本学科首页   官方微博 | 高级检索  
     


Cutting temperature of ceramic tools in high speed machining of difficult-to-cut materials
Authors:T.I. El-Wardany  E. Mohammed  M.A. Elbestawi
Affiliation:Intelligent Machines and Manufacturing Research Centre, Mechanical Engineering Department, MacMaster University, Hamilton, Ontario, Canada
Abstract:This paper deals with an experimental and analytical investigation into the different factors which influence the temperature distribution on Al2O3---TiC ceramic tool rake face during machining of difficult-to-cut materials, such as case hardened AISI 1552 steel (60–65 Rc) and nickel-based superalloys (e.g. Inconel 718). The temperature distribution was predicted first using the finite element analysis. Temperature measurements on the tool rake face using a thermocouple based technique were performed and the results were verified using the finite element analysis. Experiments were then performed to study the effect of cutting parameters, different tool geometries, tool conditions, and workpiece materials on the cutting edge temperatures. Results presented in this paper indicate that for turning case hardened steel, increasing the cutting speed, feted, and depth of cut will increase the cutting edge temperature. On the other hand, increasing the tool nose radius, and angle of approach reduces the cutting edge temperature, while increasing the width of the tool chamfer will slightly increase the cutting ege temperature. As for the negative rake angle, it was found that there is an optimum value of rake angle where the cutting edge temperature was minimum. For the Inconel 718 material, it was found that the cutting edge temperature reached a minimum at a speed of 510 m/min, and feed of 1.25 mm/rev. However, the effect of the depth of cut and tool nose radius was almost the same as that determined in the turning of case hardened steel. It was also observed in turning Inconel 718 with ceramic tools that, cutting forces and different types of tool wear were reduced with increasing the feed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号