首页 | 本学科首页   官方微博 | 高级检索  
     


Random Walk Routing in WSNs with Regular Topologies
Authors:Hui Tian  Hong Shen  Teruo Matsuzawa
Affiliation:(1) Department of Computer Science and Technology, University of Science and Technology of China, Hefei, 230027, P.R. China;(2) Department of Computing and Mathematics, Manchester Metropolitan University, U.K.;(3) School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan
Abstract:Topology is one of the most important characteristics for any type of networks because it represents the network's inherent properties and has great impact on the performance of the network. For wireless sensor networks (WSN), a well-deployed regular topology can help save more energy than what a random topology can do. WSNs with regular topologies can prolong network lifetime as studied in many previous work. However, little work has been done in developing effective routing algorithms for WSNs with regular topologies, except routing along a shortest path with the knowledge of global location information of sensor nodes. In this paper, a new routing protocol based on random walk is proposed. It does not require global location information. It also achieves load balancing property inherently for WSNs which is difficult to achieve by other routing protocols. In the scenarios where the message required to be sent to the base station is in comparatively small size with the inquiry message among neighboring nodes, it is proved that the random walk routing protocol can guarantee high probability of successful transmission from the source to the base station with the same amount of energy consumption as the shortest path routing. Since in many applications of WSNs, sensor nodes often send only beep-like small messages to the base station to report their status, our proposed random walk routing is thus a viable scheme and can work very efficiently especially in these application scenarios. The random walk routing provides load balancing in the WSN as mentioned, however, the nodes near to the base station are inevitably under heavier burden than those far away from the base station. Therefore, a density-aware deployment scheme is further proposed to guarantee that the heavy-load nodes do not affect the network lifetime even if their energy is exhausted. The main idea is deploying sensors with different densities according to their distance to the base station. It will be shown in this paper that incorporating the random walk routing protocol with the density-aware deployment scheme can effectively prolong the network lifetime.
Keywords:wireless sensor networks  routing  random walk  shortest path
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《计算机科学技术学报》浏览原始摘要信息
点击此处可从《计算机科学技术学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号