首页 | 本学科首页   官方微博 | 高级检索  
     


Refractive Index Drop Observed After Precision Molding of Optical Elements: A Quantitative Understanding Based on the Tool–Narayanaswamy–Moynihan Model
Authors:Ulrich Fotheringham  rea Baltes  Peter Fischer  Petra Höhn  Ralf Jedamzik  Christian Schenk  Claudia Stolz  Gerhard Westenberger
Affiliation:SCHOTT AG, 55014 Mainz, Germany
Abstract:The room-temperature refractive index is measured for three different prior cooling rates (approximately 10, 50, and 250 K/h) for two glasses especially developed for precision molding. The empirical logarithmic relationship between the cooling rate and the refractive index is also reproduced for the comparatively high cooling rate of ca. 250 K/h. The same relationship is found in a simulation of these cooling rates by the semiempirical Tool–Narayanaswamy–Moynihan model for structural relaxation, with the necessary parameters obtained from differential scanning calorimetry and temperature jump experiments. The measured and the simulated refractive indices coincide within the limits of experimental error. The results demonstrate that the index drop, which is observed when these glasses are first cooled at a regular optical cooling rate (e.g., 2 K/h), and then precision molded (typical cooling rate 1000 K/h), can be understood considering the concepts of structural relaxation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号